Journal of Postgraduate Medicine, Education and Research

Register      Login

VOLUME 54 , ISSUE 4 ( October-December, 2020 ) > List of Articles

REVIEW ARTICLE

What's New in the Management of Articular Cartilage Injuries in Athletes

Srinivas BS Kambhampati, Raju Vaishya, Shanmugasundaram Saseendar, Abhishek Vaish

Keywords : Articular cartilage injuries in athletes, Elite athlete injuries, Narrative review articular cartilage injuries, Professional athlete cartilage injuries

Citation Information : Kambhampati SB, Vaishya R, Saseendar S, Vaish A. What's New in the Management of Articular Cartilage Injuries in Athletes. J Postgrad Med Edu Res 2020; 54 (4):218-226.

DOI: 10.5005/jp-journals-10028-1362

License: CC BY-NC 4.0

Published Online: 25-01-2021

Copyright Statement:  Copyright © 2020; Jaypee Brothers Medical Publishers (P) Ltd.


Abstract

Aim: To review the literature on management of articular cartilage injuries in elite athletes with a focus on new developments. Background: Articular cartilage injury is a common problem that can lead to significant pain and loss of function. This tissue has a poor healing capacity due to its avascular and aneural status. No treatment option has been completely successful in stimulating articular cartilage repair and regeneration. Such an injury in a professional athlete could turn out to be a performance- or a career-ending event. There is a dearth of evidence on the treatment of articular cartilage injuries in athletes. Hence, we reviewed available evidence on the management of articular cartilage injuries in professional athletes. Materials and methods: A key word search was done on PubMed, Scopus, EMBASE, and Ovid Medline. After filtering, 89 articles were reviewed to extract available evidence on the subject. Results: Overall there are few good-quality reports on the outcomes of cartilage repair and reconstruction techniques, specifically in professional athletes. Most reports are case series or reports. Most commonly involved areas include the femoral condyles, femoral heads, talus, humerus condyles, and the humeral head. Various treatment options have been tried and include chondroplasty, microfracture and its various modifications, bilayered autograft and allograft transplantation, and cell-based regenerative techniques (platelet-rich plasma, autologous cultured chondrocytes, and mesenchymal cells). Conclusion: While most treatment methods have produced good results in the short- and mid-term, little good-quality evidence is available on their long-term results. The newer techniques such as tissue engineering methods, 3D bioprinting, and gene therapy appear to be promising. But these are still in preclinical state and are likely to pave way to better treatment options in the future. Clinical significance: Elite athletes are a challenging group of patients who require exacting techniques, more demanding than the general population, to restore their function and return to play at same level. Current available techniques restore their function to a large extent, but outcomes may be improved. Cartilage restoration techniques are evolving, and newer techniques are developing to improve outcomes.


PDF Share
  1. Vaishya R, Patralekh MK, Vaish A. The upsurge in research and publication on articular cartilage repair in the last 10 years. Indian J Orthop 2019;53(5):586–594. DOI: 10.4103/ortho.IJOrtho_83_19.
  2. Lin Z, Willers C, Xu J, et al. The chondrocyte: biology and clinical application. Tissue Eng 2006;12(7):1971–1984. DOI: 10.1089/ten.2006.12.1971.
  3. Sharma G, Saxena RK, Mishra P. Differential effects of cyclic and static pressure on biochemical and morphological properties of chondrocytes from articular cartilage. Clin Biomech Bristol Avon 2007;22(2):248–255. DOI: 10.1016/j.clinbiomech.2006.09.008.
  4. Buckwalter JA, Mankin HJ, Grodzinsky AJ. Articular cartilage and osteoarthritis. Instr Course Lect 2005;54:465–480.
  5. Wong M, Carter DR. Articular cartilage functional histomorphology and mechanobiology: a research perspective. Bone 2003;33(1):1–13. DOI: 10.1016/S8756-3282(03)00083-8.
  6. Edwards DJ, Lomas D, Villar RN. Diagnosis of the painful hip by magnetic resonance imaging and arthroscopy. J Bone Joint Surg Br 1995;77(3):374–376.
  7. Erb RE. Current concepts in imaging the adult hip. Clin Sports Med 2001;20(4):661–696. DOI: 10.1016/S0278-5919(05)70278-7.
  8. Potter HG, Linklater JM, Allen AA, et al. Magnetic resonance imaging of articular cartilage in the knee. an evaluation with use of fast-spin-echo imaging. J Bone Joint Surg Am 1998;80(9):1276–1284. DOI: 10.2106/00004623-199809000-00005.
  9. Messner K, Maletius W. The long-term prognosis for severe damage to weight-bearing cartilage in the knee: a 14-year clinical and radiographic follow-up in 28 young athletes. Acta Orthop Scand 1996;67(2):165–168. DOI: 10.3109/17453679608994664.
  10. Felson DT, Lawrence RC, Dieppe PA, et al. Osteoarthritis: New insights. part 1: the disease and its risk factors. Ann Intern Med 2000;133(8):635–646. DOI: 10.7326/0003-4819-133-8-200010170-00016.
  11. Vaishya R, Kambhampati SBS, Vaish A. Meniscal injuries in the olympic and elite athletes. Indian J Orthop 2020;54(3):281–293.
  12. McDermott M, Freyne P. Osteoarthrosis in runners with knee pain. Br J Sports Med 1983;17(2):84–87. DOI: 10.1136/bjsm.17.2.84.
  13. Hohmann E, Wörtler K, Imhoff AB. MR imaging of the hip and knee before and after marathon running. Am J Sports Med 2004;32(1): 55–59. DOI: 10.1177/0363546503258904.
  14. Lazzarini KM, Troiano RN, Smith RC. Can running cause the appearance of marrow edema on MR images of the foot and ankle? Radiology 1997;202(2):540–542. DOI: 10.1148/radiology.202.2.9015087.
  15. Kaplan LD, Schurhoff MR, Selesnick H, et al. Magnetic resonance imaging of the knee in asymptomatic professional basketball players. Arthroscopy 2005;21(5):557–561. DOI: 10.1016/j.arthro.2005.01.009.
  16. Hirshorn KC, Cates T, Gillogly S. Magnetic resonance imaging-documented chondral injuries about the knee in college football players: 3-year national football league combine data. Arthroscopy 2010;26(9):1237–1240. DOI: 10.1016/j.arthro.2010.01.025.
  17. Noyes FR, Bassett RW, Grood ES, et al. Arthroscopy in acute traumatic hemarthrosis of the knee. incidence of anterior cruciate tears and other injuries. J Bone Joint Surg Am 1980;62(5):687–695. DOI: 10.2106/00004623-198062050-00001, 757.
  18. Jordan MJ, Doyle-Baker P, Heard M, et al. A retrospective analysis of concurrent pathology in ACL-reconstructed knees of elite alpine ski racers. Orthop J Sports Med 2017;5(7).
  19. Mayes S, Ferris A-R, Smith P, et al. Professional ballet dancers have a similar prevalence of articular cartilage defects compared to age- and sex-matched non-dancing athletes. Clin Rheumatol 2016;35(12): 3037–3043. DOI: 10.1007/s10067-016-3389-4.
  20. Angioi M, Maffulli GD, McCormack M, et al. Early signs of osteoarthritis in professional ballet dancers: a preliminary study. Clin J Sport Med 2014;24(5):435–437. DOI: 10.1097/JSM.0000000000000035.
  21. Grzelak P, Podgorski MT, Stefanczyk L, et al. Subchondral impaction fractures of the medial femoral condyle in weightlifters: A report of 5 cases. Clin J Sport Med 2016;26(1):e3–e5. DOI: 10.1097/JSM.0000000000000193.
  22. Sonnery-Cottet B, Archbold P, Thaunat M, et al. Rapid chondrolysis of the knee after partial lateral meniscectomy in professional athletes. Knee 2014;21(2):504–508. DOI: 10.1016/j.knee.2014.01.001.
  23. Marom N, Wang D, Patel S, et al. Return to play after bipolar patellofemoral osteochondral allograft transplantation for a professional basketball player: A case report. JBJS Case Connect 2019;9(3):e0291. DOI: 10.2106/JBJS.CC.18.00291.
  24. Wang D, Jones KJ, Eliasberg CD, et al. Condyle-specific matching does not improve midterm clinical outcomes of osteochondral allograft transplantation in the knee. J Bone Joint Surg Am 2017;99(19):1614–1620.
  25. Wang D, Coxe FR, Balazs GC, et al. Graft-recipient anteroposterior mismatch does not affect the midterm clinical outcomes of osteochondral allograft transplantation of the femoral condyle. Am J Sports Med 2018;46(10):2441–2448. DOI: 10.1177/0363546518782939.
  26. Louboutin H, Debarge R, Richou J, et al. Osteoarthritis in patients with anterior cruciate ligament rupture: A review of risk factors. Knee 2009;16(4):239–244. DOI: 10.1016/j.knee.2008.11.004.
  27. DeJour H, Neyret P, Bonnin M. Instability and osteoarthritis. In: Harner CD, Fu FH Knee Surg. Williams and Wilkins; 1994. pp. 859–875.
  28. Mithoefer K, Steadman RJ. Microfracture in football (soccer) players: A case series of professional athletes and systematic review. Cartilage 2012;3(1 Suppl):18S–24S.
  29. Shelbourne KD, Gray T. Natural history of acute posterior cruciate ligament tears. J Knee Surg 2002;15(2):103–107.
  30. Pánics G, Hangody LR, Baló E, et al. Osteochondral autograft and mosaicplasty in the football (soccer) athlete. Cartilage 2012;3(1 Suppl):25s–30s.
  31. MOON Knee Group, Jones MH, Oak SR, et al. Predictors of radiographic osteoarthritis 2 to 3 years after anterior cruciate ligament reconstruction: data from the MOON on-site nested cohort. Orthop J Sports Med 2019;7(8):2325967119867085–2325967119867085.
  32. MOON Knee Group, Spindler KP, Huston LJ, et al. Ten-year outcomes and risk factors after anterior cruciate ligament reconstruction: A MOON longitudinal prospective cohort study. Am J Sports Med 2018;46(4):815–825. DOI: 10.1177/0363546517749850.
  33. MARS Group. Meniscal and articular cartilage predictors of clinical outcome after revision anterior cruciate ligament reconstruction. Am J Sports Med 2016;44(7):1671–1679. DOI: 10.1177/0363546516644218.
  34. McCarthy JC, Noble PC, Schuck MR, et al. The otto E. Aufranc award: the role of labral lesions to development of early degenerative hip disease. Clin Orthop 2001;393:25–37. DOI: 10.1097/00003086-200112000-00004.
  35. McCarthy J, Barsoum W, Puri L, et al. The role of hip arthroscopy in the elite athlete. Clin Orthop 2003;406:71–74. DOI: 10.1097/00003086-200301000-00012.
  36. Ferguson SJ, Bryant JT, Ganz R, et al. An in vitro investigation of the acetabular labral seal in hip joint mechanics. J Biomech 2003;36(2):171–178. DOI: 10.1016/S0021-9290(02)00365-2.
  37. Ferguson SJ, Bryant JT, Ganz R, et al. The acetabular labrum seal: a poroelastic finite element model. Clin Biomech Bristol Avon 2000;15(6):463–468. DOI: 10.1016/S0268-0033(99)00099-6.
  38. Gold SL, Burge AJ, Potter HG. MRI of hip cartilage: joint morphology, structure, and composition. Clin Orthop 2012;470(12):3321–3331. DOI: 10.1007/s11999-012-2403-7.
  39. Sutter R, Zubler V, Hoffmann A, et al. Hip MRI: how useful is intraarticular contrast material for evaluating surgically proven lesions of the labrum and articular cartilage? AJR Am J Roentgenol 2014;202(1):160–169. DOI: 10.2214/AJR.12.10266.
  40. Keeney JA, Peelle MW, Jackson J, et al. Magnetic resonance arthrography vs arthroscopy in the evaluation of articular hip pathology. Clin Orthop 2004;429:163–169. DOI: 10.1097/01.blo.0000150125.34906.7d.
  41. Chinzei N, Hashimoto S, Hayashi S, et al. Consecutive bilateral hip arthroscopy for symptomatic bilateral femoroacetabular impingement in an elite rugby player: A case report. J Nippon Med Sch 2017;84(6):280–285. DOI: 10.1272/jnms.84.280.
  42. Beck M, Kalhor M, Leunig M, et al. Hip morphology influences the pattern of damage to the acetabular cartilage: femoroacetabular impingement as a cause of early osteoarthritis of the hip. J Bone Joint Surg Br 2005;87(7):1012–1018.
  43. McDonald JE, Herzog MM, Philippon MJ. Performance outcomes in professional hockey players following arthroscopic treatment of FAI and microfracture of the hip. Knee Surg Sports Traumatol Arthrosc 2014;22(4):915–919. DOI: 10.1007/s00167-013-2691-9.
  44. Kreulen C, Giza E, Kim J, et al. Viability of talus osteochondral defect cartilage for chondrocyte harvesting: results of 151 patients. Foot Ankle Int 2014;35(4):341–345. DOI: 10.1177/1071100714523272.
  45. Vonk LA, Doulabi BZ, Huang C, et al. Preservation of the chondrocyte's pericellular matrix improves cell-Induced cartilage formation. J Cell Biochem 2010;110(1):260–271.
  46. Kim SH, Ha KI, Ahn JH. Tram track lesion of the talar dome. Arthroscopy 1999;15(2):203–206. DOI: 10.1053/ar.1999.v15.015020.
  47. Hacken B, Onks C, Flemming D, et al. Prevalence of MRI shoulder abnormalities in asymptomatic professional and collegiate ice hockey athletes. Orthop J Sports Med 2019;7(10):2325967119876865.
  48. Gutierrez NM, Granville C, Kaplan L, et al. Elbow MRI findings do not correlate with future placement on the disabled list in asymptomatic professional baseball pitchers. Sports Health 2017;9(3):222–229. DOI: 10.1177/1941738117701769.
  49. Jeon I-H, Wallace WA. Traumatic humeral articular cartilage shear (THACS) lesion in a professional rugby player: a case report. Br J Sports Med 2004;38(4):E12–E12. DOI: 10.1136/bjsm.2003.007708.
  50. Micheli L, Curtis C, Shervin N. Articular cartilage repair in the adolescent athlete: is autologous chondrocyte implantation the answer? Clin J Sport Med 2006;16(6):465–470. DOI: 10.1097/01.jsm.0000248842.93755.e2.
  51. Vaishya R. The journey of articular cartilage repair. J Clin Orthop Trauma 2016;7(3):135–136. DOI: 10.1016/j.jcot.2016.06.001.
  52. Mithoefer K, Peterson L, Zenobi-Wong M, et al. Cartilage issues in football-today's problems and tomorrow's solutions. Br J Sports Med 2015;49(9):590–596. DOI: 10.1136/bjsports-2015-094772.
  53. Lu Y, Edwards RB, Cole BJ, et al. Thermal chondroplasty with radiofrequency energy. an in vitro comparison of bipolar and monopolar radiofrequency devices. Am J Sports Med 2001;29(1):42–49. DOI: 10.1177/03635465010290011201.
  54. Mithoefer K, Williams 3rd RJ, Warren RF, et al. High-impact athletics after knee articular cartilage repair: a prospective evaluation of the microfracture technique. Am J Sports Med 2006;34(9):1413–1418. DOI: 10.1177/0363546506288240.
  55. Mithoefer K, Venugopal V, Manaqibwala M. Incidence, degree, and clinical effect of subchondral bone overgrowth after microfracture in the knee. Am J Sports Med 2016;44(8):2057–2063. DOI: 10.1177/0363546516645514.
  56. Steadman JR, Hanson CM, Briggs KK, et al. Outcomes after knee microfracture of chondral defects in alpine ski racers. J Knee Surg 2014;27(5):407–410. DOI: 10.1055/s-0034-1376330.
  57. Cerynik DL, Lewullis GE, Joves BC, et al. Outcomes of microfracture in professional basketball players. Knee Surg Sports Traumatol Arthrosc 2009;17(9):1135–1139. DOI: 10.1007/s00167-009-0765-5.
  58. Riyami M, Rolf C. Evaluation of microfracture of traumatic chondral injuries to the knee in professional football and rugby players. J Orthop Surg 2009;4:13–13. DOI: 10.1186/1749-799X-4-13.
  59. Kreuz PC, Erggelet C, Steinwachs MR, et al. Is microfracture of chondral defects in the knee associated with different results in patients aged 40 years or younger? Arthroscopy 2006;22(11):1180–1186. DOI: 10.1016/j.arthro.2006.06.020.
  60. Strauss EJ, Barker JU, Kercher JS, et al. Augmentation strategies following the microfracture technique for repair of focal chondral defects. Cartilage 2010;1(2):145–152. DOI: 10.1177/1947603510366718.
  61. Hoemann CD, Hurtig M, Rossomacha E, et al. Chitosan-glycerol phosphate/blood implants improve hyaline cartilage repair in ovine microfracture defects. J Bone Joint Surg Am 2005;87(12):2671–2686. DOI: 10.2106/00004623-200512000-00011.
  62. Wang D-A, Varghese S, Sharma B, et al. Multifunctional chondroitin sulphate for cartilage tissue-biomaterial integration. Nat Mater 2007;6(5):385–392. DOI: 10.1038/nmat1890.
  63. Zantop T, Petersen W. Arthroscopic implantation of a matrix to cover large chondral defect during microfracture. Arthroscopy 2009;25(11):1354–1360. DOI: 10.1016/j.arthro.2009.04.077.
  64. Bark S, Riepenhof H, Gille J. AMIC cartilage repair in a professional soccer player. Case Rep Orthop 2012;2012:364342.
  65. Schiavone Panni A, Del Regno C, Mazzitelli G, et al. Good clinical results with autologous matrix-Induced chondrogenesis (AMIC) technique in large knee chondral defects. Knee Surg Sports Traumatol Arthrosc 2018;26(4):1130–1136.
  66. Gille J, Behrens P, Volpi P, et al. Outcome of autologous matrix induced chondrogenesis (AMIC) in cartilage knee surgery: data of the AMIC registry. Arch Orthop Trauma Surg 2013;133(1):87–93. DOI: 10.1007/s00402-012-1621-5.
  67. Stanish WD, McCormack R, Forriol F, et al. Novel scaffold-based BST-Cargel treatment results in superior cartilage repair compared with microfracture in a randomized controlled trial. J Bone Joint Surg Am 2013;95(18):1640–1650. DOI: 10.2106/JBJS.L.01345.
  68. Desai S. Surgical treatment of a tibial osteochondral defect with debridement, marrow stimulation, and micronized allograft cartilage matrix: report of an all-arthroscopic technique. J Foot Ankle Surg 2016;55(2):279–282. DOI: 10.1053/j.jfas.2014.07.011.
  69. D'Ambrosi R, Valli F, De Luca P, et al. MaioRegen osteochondral substitute for the treatment of knee defects: A systematic review of the literature. J Clin Med 2019;8(6):783. DOI: 10.3390/jcm8060783.
  70. Shetty AA, Kim SJ, Shetty V, et al. Autologous collagen induced chondrogenesis (ACIC: Shetty-Kim technique): A matrix based acellular single stage arthroscopic cartilage repair technique. J Clin Orthop Trauma 2016;7(3):164–169. DOI: 10.1016/j.jcot.2016.05.003.
  71. Mandelbaum BR, Stone JA. Editorial commentary: Second-generation microfracture-we are only as strong as our Weakest link. Arthroscopy 2019;35(4):1219–1221. DOI: 10.1016/j.arthro.2019.01.037.
  72. Chen H, Sun J, Hoemann CD, et al. Drilling and microfracture lead to different bone structure and necrosis during bone-marrow stimulation for cartilage repair. J Orthop Res 2009;27(11):1432–1438. DOI: 10.1002/jor.20905.
  73. Hangody L, Füles P. Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience. J Bone Joint Surg Am 2003;85-A(Suppl 2):25–32.
  74. Kish G, Módis L, Hangody L. Osteochondral mosaicplasty for the treatment of focal chondral and osteochondral lesions of the knee and talus in the athlete. rationale, indications, techniques, and results. Clin Sports Med 1999;18(1):45–66. DOI: 10.1016/S0278-5919(05)70129-0, vi.
  75. Gudas R, Kalesinskas RJ, Kimtys V, et al. A prospective randomized clinical study of mosaic osteochondral autologous transplantation vs microfracture for the treatment of osteochondral defects in the knee joint in young athletes. Arthroscopy 2005;21(9):1066–1075. DOI: 10.1016/j.arthro.2005.06.018.
  76. Gudas R, Stankevicius E, Monastyreckiene E, et al. Osteochondral autologous transplantation vs microfracture for the treatment of articular cartilage defects in the knee joint in athletes. Knee Surg Sports Traumatol Arthrosc 2006;14(9):834–842. DOI: 10.1007/s00167-006-0067-0.
  77. Hangody L, Dobos J, Balo E, et al. Clinical experiences with autologous osteochondral mosaicplasty in an athletic population: A 17-year prospective multicenter study. Am J Sports Med 2010;38(6):1125–1133. DOI: 10.1177/0363546509360405.
  78. Marcacci M, Kon E, Zaffagnini S, et al. Multiple osteochondral arthroscopic grafting (mosaicplasty) for cartilage defects of the knee: prospective study results at 2-year follow-up. Arthroscopy 2005;21(4):462–470. DOI: 10.1016/j.arthro.2004.12.003.
  79. Solheim E, Hegna J, Inderhaug E. Long-term survival after microfracture and mosaicplasty for knee articular cartilage repair: A comparative study between two treatments cohorts. Cartilage 2020;11(1):71–76.
  80. Lynch TS, Patel RM, Benedick A, et al. Systematic review of autogenous osteochondral transplant outcomes. Arthroscopy 2015;31(4):746–754. DOI: 10.1016/j.arthro.2014.11.018.
  81. Gross AE, Shasha N, Aubin P. Long-term followup of the use of fresh osteochondral allografts for posttraumatic knee defects. Clin Orthop 2005;435:79–87.
  82. Jones DG, Peterson L. Autologous chondrocyte implantation. J Bone Joint Surg Am 2006;88(11):2502–2520.
  83. Mithoefer K, McAdams TR, Scopp JM, et al. Emerging options for treatment of articular cartilage injury in the athlete. Clin Sports Med 2009;28(1):25–40. DOI: 10.1016/j.csm.2008.09.001.
  84. Saris DBF, Vanlauwe J, Victor J, et al. Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial vs microfracture. Am J Sports Med 2008;36(2):235–246. DOI: 10.1177/0363546507311095.
  85. Marcacci M, Kon E, Delcogliano M, et al. Arthroscopic autologous osteochondral grafting for cartilage defects of the knee: prospective study results at a minimum 7-year follow-up. Am J Sports Med 2007;35(12):2014–2021. DOI: 10.1177/0363546507305455.
  86. Crawford DC, DeBerardino TM, Williams 3rd RJ. NeoCart, an autologous cartilage tissue implant, compared with microfracture for treatment of distal femoral cartilage lesions: an FDA phase-II prospective, randomized clinical trial after two years. J Bone Joint Surg Am 2012;94(11):979–989. DOI: 10.2106/JBJS.K.00533.
  87. Saseendar S. 3D bioprinting. In: Vaishya R, Maini L, Haleem A. Update Med. 3D Print. India: SALUBRIS; 2019. pp.189–201.
  88. Shim J-H, Jang K-M, Hahn SK, et al. Three-dimensional bioprinting of multilayered constructs containing human mesenchymal stromal cells for osteochondral tissue regeneration in the rabbit knee joint. Biofabrication 2016;8(1):014102. DOI: 10.1088/1758-5090/8/1/014102.
  89. Steinert AF, Nöth U, Tuan RS. Concepts in gene therapy for cartilage repair. Injury 2008;39(Suppl 1):S97–S113.
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.