Journal of Postgraduate Medicine, Education and Research

Register      Login

VOLUME 57 , ISSUE 1 ( January-March, 2023 ) > List of Articles


Immunopathology of Malaria in Pregnancy: Immune Cells Response to Infection

Prem Lata Manhas, Upninder Kaur, Jayshree Singh, Rakesh Sehgal, Pankaj Malhotra

Keywords : Immunopathogenesis, Malaria, Pregnancy.

Citation Information : Manhas PL, Kaur U, Singh J, Sehgal R, Malhotra P. Immunopathology of Malaria in Pregnancy: Immune Cells Response to Infection. J Postgrad Med Edu Res 2023; 57 (1):19-26.

DOI: 10.5005/jp-journals-10028-1608

License: CC BY-NC 4.0

Published Online: 10-04-2023

Copyright Statement:  Copyright © 2023; The Author(s).


Malaria during pregnancy is a leading public health problem. Apart from causing maternal illness or death, malaria during pregnancy is also responsible for the occurrence of frequent abortion, stillbirth, premature delivery, and low birth weight. Malaria during pregnancy has a central feature of placental accumulation of infected erythrocytes, which is how the parasite circumvents host immunity. In this review, we have briefly discussed the immunopathogenesis of malaria in nonpregnant women explaining the normal progression of the disease in nonpregnant women. Next, we have explained in the review how it is controlled, discussing the cellular and humoral immune response in malaria. Further, we have focused in detail on the immunopathogenesis of malaria in pregnancy, how it is different from malaria in nonpregnant women, and the risks special to malaria in pregnancy. Challenges of endemicity and cell-mediated immune response [natural killer (NK) cells, macrophages, dendritic cells (DCs), T-cells, and B-cells] to malaria in pregnancy are briefed lastly.

  1. World malaria report 2018. 2018.
  2. Mineo S, Niikura M, Inoue SI, et al. Development of severe pathology in immunized pregnant mice challenged with lethal malaria parasites. Infect Immun 2013;81(10):3865–3871. DOI: 10.1128/IAI.00749-13
  3. Mockenhaupt FP, Bedu-Addo G, von Gaertner C, et al. Detection and clinical manifestation of placental malaria in Southern Ghana. Malar J 2006;5(1):119. DOI: 10.1186/1475-2875-5-119
  4. Neres R, Marinho CRF, Gonçalves LA, et al. Pregnancy outcome and placenta pathology in Plasmodium berghei ANKA infected mice reproduce the pathogenesis of severe malaria in pregnant women. PLoS One 2008;3(2):e1608. DOI: 10.1371/journal.pone.0001608
  5. Marinho CRF, Neres R, Epiphanio S, et al. Recrudescent Plasmodium berghei from pregnant mice displays enhanced binding to the placenta and induces protection in multigravida. PLoS One 2009;4(5):e5630. DOI: 10.1371/journal.pone.0005630
  6. Hviid L, Marinho CRF, Staalsoe T, et al. Of mice and women: rodent models of placental malaria. Trends Parasitol 2010;26(8):412–419. DOI: 10.1016/
  7. Briand V, Cottrell G, Massougbodji A, et al. Intermittent preventive treatment for the prevention of malaria during pregnancy in high transmission areas. Malar J 2007;6:160. DOI: 10.1186/1475-2875-6-160
  8. Miller LH, Good MF, Milon G. Malaria pathogenesis. Science 1994;264(5167):1878–1883. DOI: 10.1126/science.8009217
  9. S K. The immunology of malaria. The immunology of malaria. 2012.
  10. Haldane JBS. The rate of mutation of human genes. Hereditas 1949;35(1):267–273. DOI: 10.1111/j.1601-5223.1949.tb03339.x
  11. Piel FB, Patil AP, Howes RE, et al. Global distribution of the sickle cell gene and geographical confirmation of the malaria hypothesis. Nat Commun 2010;1(8):104. DOI: 10.1038/ncomms1104
  12. Weatherall DJ. Thalassaemia and malaria, revisited. Ann Trop Med Parasitol 1997;91(7):885–890. DOI: 10.1080/00034989760653
  13. Modiano D, Luoni G, Sirima BS, et al. Haemoglobin C protects against clinical Plasmodium falciparum malaria. Nature 2001;414(6861):305–308. DOI: 10.1038/35104556
  14. Allen SJ, O’Donnell A, Alexander ND, et al. alpha+-Thalassemia protects children against disease caused by other infections as well as malaria. Proc Natl Acad Sci U S A 1997;94(26):14736–14741. DOI: 10.1073/pnas.94.26.14736
  15. Wambua S, Mwangi TW, Kortok M, et al. The effect of α+-thalassaemia on the incidence of malaria and other diseases in children living on the coast of Kenya. PLoS Med 2006;3(5):e158. DOI: 10.1371/journal.pmed.0030158
  16. Williams TN, Wambua S, Uyoga S, et al. Both heterozygous and homozygous α+ thalassemias protect against severe and fatal Plasmodium falciparum malaria on the coast of Kenya. Blood 2005;106(1):368–371. DOI: 10.1182/blood-2005-01-0313
  17. Penman BS, Pybus OG, Weatherall DJ, et al. Epistatic interactions between genetic disorders of hemoglobin can explain why the sickle-cell gene is uncommon in the Mediterranean. Proc Natl Acad Sci U S A 2009;106(50):21242–21246. DOI: 10.1073/pnas.0910840106
  18. Williams TN, Mwangi TW, Wambua S, et al. Negative epistasis between the malaria-protective effects of α+-thalassemia and the sickle cell trait. Nat Genet 2005;37(11):1253–1237. DOI: 10.1038/ng1660
  19. Guindo A, Fairhurst RM, Doumbo OK, et al. X-linked G6PD deficiency protects hemizygous males but not heterozygous females against severe malaria. PLoS Med 2007;4(3):e66. DOI: 10.1371/journal.pmed.0040066
  20. Ruwende C, Khoo SC, Snow RW, et al. Natural selection of hemi– and heterozygotes for g6pd deficiency in africa by resistance to severe malaria. Nature 1995;376(6537):246–249. DOI: 10.1038/376246a0
  21. Gupta S, Hill AV. Dynamic interactions in malaria: Host heterogeneity meets parasite polymorphism. Proc Biol Sci 1995;261(1362):271–277. DOI: 10.1098/rspb.1995.0147
  22. Brannan LR, Turner CM, Phillips RS. Malaria parasites undergo antigenic variation at high rates in vivo. Proc Biol Sci 1994;256(1345):71–75. DOI: 10.1098/rspb.1994.0051
  23. Recker M, Buckee CO, Serazin A, et al. Antigenic variation in Plasmodium falciparum malaria involves a highly structured switching pattern. PLoS Pathog 2011;7(3):e1001306. DOI: 10.1371/journal.ppat.1001306
  24. Bull PC, Lowe BS, Kortok M, et al. Antibody recognition of Plasmodium falciparum erythrocyte surface antigens in Kenya: evidence for rare and prevalent variants. Infect Immun. 1999;67(2):733–739. DOI: 10.1128/IAI.67.2.733-739.1999
  25. Iqbal J, Perlmann P, Berzins K. Serological diversity of antigens expressed on the surface of erythrocytes infected with plasmodium falciparum. Trans R Soc Trop Med Hyg 1993;87(5):583–588. DOI: 10.1016/0035-9203(93)90097-a
  26. Clyde DF. Immunization of man against falciparum and vivax malaria by use of attenuated sporozoites. Am J Trop Med Hyg 1975;24(3):397–401. DOI: 10.4269/ajtmh.1975.24.397
  27. Romero P, Maryanski JL, Corradin G, et al. Cloned cytotoxic T cells recognize an epitope in the circumsporozoite protein and protect against malaria. Nature 1989;341(6240):323–326. DOI: 10.1038/341323a0
  28. Kägi D, Vignaux F, Ledermann B, et al. Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity. Science 1994;265(5171):528–530. DOI: 10.1126/science.7518614
  29. Morrot A, Zavala F. Effector and memory CD8 T cells as seen in immunity to malaria+. Immunol Rev 2004;201:291–303. DOI: 10.1111/j.0105-2896.2004.00175.x
  30. Schofield L, Villaquiran J, Ferreira A, et al. Gamma Interferon, CD8+ T cells and antibodies required for immunity to malaria sporozoites. Nature 1987;330(6149):664–666. DOI: 10.1038/330664a0
  31. Aidoo M, Udhayakumar V. Field studies of cytotoxic T lymphocytes in malaria infections: implications for malaria vaccine development. Parasitol Today 2000;16(2):50–56. DOI: 10.1016/s0169-4758(99)01592-6
  32. Aidoo M, Lalvani A, Allsopp CE, et al. Identification of conserved antigenic components for a cytotoxic T lymphocyte-inducing vaccine against malaria. Lancet 1995;345(8956):1003–1007. DOI: 10.1016/s0140-6736(95)90754-8
  33. Bottius E, BenMohamed L, Brahimi K, et al. A novel Plasmodium falciparum sporozoite and liver stage antigen (SALSA) defines major B, T helper, and CTL epitopes. J Immunol 1996;156(8):2874–2884. PMID: 8609407.
  34. Biemba G, Gordeuk VR, Thuma P, et al. Markers of inflammation in children with severe malarial anaemia. Trop Med Int Health 2000;5(4):256–262. DOI: 10.1046/j.1365-3156.2000.00545.x
  35. Walther M, Tongren JE, Andrews L, et al. Upregulation of TGF-β, FOXP3, and CD4+CD25+ regulatory T cells correlates with more rapid parasite growth in human malaria infection. Immunity 2005;23(3):287–296. DOI: 10.1016/j.immuni.2005.08.006
  36. Todryk SM, Bejon P, Mwangi T, et al. Correlation of memory T cell responses against TRAP with protection from clinical malaria, and CD4+ CD25high T cells with susceptibility in Kenyans. PLoS One 2008;3(4):e2027. DOI: 10.1371/journal.pone.0002027
  37. Amante FH, Stanley AC, Randall LM, et al. A role for natural regulatory T cells in the pathogenesis of experimental cerebral malaria. Am J Pathol 2007;171(2):548–559. DOI: 10.2353/ajpath.2007.061033
  38. Boyle MJ, Jagannathan P, Farrington La, et al. Decline of FoxP3+ regulatory CD4 T cells in peripheral blood of children heavily exposed to malaria. PLoS Pathog 2015;11(7):1–21. DOI: 10.1371/journal.ppat.1005041
  39. Torres KJ, Villasis E, Bendezú J, et al. Relationship of regulatory T cells to Plasmodium falciparum malaria symptomatology in a hypoendemic region. Malar J 2014;13(1):108. DOI: 10.1186/1475-2875-13-108
  40. Alves FP, Gil LHS, Marrelli MT, et al. Asymptomatic carriers of Plasmodium spp. as infection source for malaria vector mosquitoes in the Brazilian Amazon. J Med Entomol 2005;42(5):777–779. DOI: 10.1093/jmedent/42.5.777
  41. Sakaguchi S, Powrie F. Emerging challenges in regulatory T cell function and biology. Science 2007;317(5838):627–629. DOI: 10.1126/science.1142331
  42. Kossodo S, Monso C, Juillard P, et al. Interleukin-10 modulates susceptibility in experimental cerebral malaria. Immunology 1997;91(4):536–540. DOI: 10.1046/j.1365-2567.1997.00290.x
  43. McGregor IA, Carrington SP. Treatment of East African P. falciparum malaria with West African human γ-globulin. Trans R Soc Trop Med Hyg 1963;57(3):170–175. DOI: 10.1016/0035-9203(63)90058-0
  44. Sabchareon A, Burnouf T, Ouattara D, et al. Parasitologic and clinical human response to immunoglobulin administration in falciparum malaria. Am J Trop Med Hyg 1991;45(3):297–308. DOI: 10.4269/ajtmh.1991.45.297
  45. Edozien J, Gilles H UI. Adult and cord blood gammaglobulin and immunity to malaria in Nigerians. Lancet 1962;280(7623):951–955. DOI: 10.1016/S0140-6736(62)90725-0
  46. Kinyanjui SM, Bull P, Newbold CI, et al. Kinetics of antibody responses to Plasmodium falciparum-infected erythrocyte variant surface antigens. J Infect Dis 2003;187(4):667–674. DOI: 10.1086/373994
  47. Schofield L, Grau GE. Immunological processes in malaria pathogenesis. Nat Rev Immunol 2005;5(9):722–735. DOI: 10.1038/nri1686
  48. Beeson JG, Amin N, Kanjala M, et al. Selective accumulation of mature asexual stages of plasmodium falciparum-infected erythrocytes in the placenta. Infect Immun 2002;70:5412–5415. DOI: 10.1128/IAI.70.10.5412-5415.2002
  49. Beeson JG, Duffy PE. The immunology and pathogenesis of malaria during pregnancy. Curr Top Microbiol Immunol 2005;297:187–227. DOI: 10.1007/3-540-29967-x_6
  50. Rieger H, Yoshikawa HY, Quadt K, et al. Cytoadhesion of Plasmodium falciparum - infected erythrocytes to chondroitin-4-sulfate is cooperative and shear enhanced. Blood 2015;125(2):383–391. DOI: 10.1182/blood-2014-03-561019
  51. Rogerson SJ, Hviid L, Duffy PE, et al. Malaria in pregnancy: pathogenesis and immunity. Lancet Infect Dis 2007;7(2):105–117. DOI: 10.1016/S1473-3099(07)70022-1
  52. Fried M, Muga RO, Misore AO, et al. Malaria elicits type 1 cytokines in the human placenta: IFN-gamma and TNF-alpha associated with pregnancy outcomes. J Immunol 1998;160(5):2523–2530. PMID: 9498798.
  53. Moore JM, Nahlen BL, Misore A, et al. Immunity to placental malaria. I. Elevated production of interferon-γ by placental blood mononuclear cells is associated with protection in an area with high transmission of malaria. J Infect Dis 1999;179(5):1218–1225. DOI: 10.1086/314737
  54. Ordi J, Menendez C, Ismail MR, et al. Placental malaria is associated with cell-mediated inflammatory responses with selective absence of natural killer cells. J Infect Dis 2001;183(7):1100–1107. DOI: 10.1086/319295
  55. Ye W, Chew M, Hou J, et al. Microvesicles from malaria-infected red blood cells activate natural killer cells via MDA5 pathway. PLoS Pathog 2018;14(10):1–21. DOI: 10.1371/journal.ppat.1007298
  56. Stevenson MM, Tam MF, Wolf SF SA. IL-12-induced protection against blood-stage Plasmodium chabaudi AS requires IFN-gamma and TNF-alpha and occurs via a nitric oxide-dependent mechanism. J Immunol 1995;155:2545–2556. PMID: 7650384.
  57. Loughland JR, Woodberry T, Boyle MJ, et al. Plasmodium falciparum activates CD16+ dendritic cells to produce tumor necrosis factor and interleukin-10 in subpatent malaria. J Infect Dis 2019;219(4):660–671. DOI: 10.1093/infdis/jiy555
  58. Taylor-Robinson AW, Phillips RS, Severn A, et al. The role of TH1 and TH2 cells in a rodent malaria infection. Science 1993;260(5116):1931–1934. DOI: 10.1126/science.8100366
  59. Langhorne J. Immunology and immunopathogenesis of malaria: Preface. Current Topics in Microbiology and Immunology 2005.
  60. Müller K, Gibbins MP, Matuschewski K, et al. Evidence of cross-stage CD8+ T cell epitopes in malaria pre-erythrocytic and blood stage infections. Parasite Immunol 2017;39(7):e12434. DOI: 10.1111/pim.12434
  61. Bueno LL, Morais CG, Lacerda MV, et al. Interleukin-17 producing T helper cells are increased during natural Plasmodium vivax infection. Acta Trop 2012;123(1):53–57. DOI: 10.1016/j.actatropica.2012.02.071
  62. Velavan T, Ojurongbe O. Regulatory T cells and parasites. J Biomed Biotechnol 2011;2011(1):1–8. DOI: 10.1155/2011/520940
  63. Vigário AM, Gorgette O, Dujardin HC, et al. Regulatory CD4+ CD25+ Foxp3+ T cells expand during experimental Plasmodium infection but do not prevent cerebral malaria. Int J Parasitol 2007;37(8–9):963–973. DOI: 10.1016/j.ijpara.2007.01.004
  64. Minigo G, Woodberry T, Piera KA, et al. Parasite-dependent expansion of TNF receptor II– positive regulatory T cells with enhanced suppressive activity in adults with severe malaria. PLoS Pathog 2009;5(4):e1000402. DOI: 10.1371/journal.ppat.1000402
  65. Weiss G, Crompton P, Li S, et al. Atypical memory B cells are greatly expanded in individuals living in a malaria-endemic area. J Immunol 2009;183(3):2176–2182. DOI: 10.4049/jimmunol.0901297
  66. Requena P, Campo J, Umbers A, et al. Pregnancy and malaria exposure are associated with changes in the B cell pool and in plasma eotaxin levels. J Immunol 2014;193(6):2971–2983. DOI: 10.4049/jimmunol.1401037
  67. Han X, Yang J, Zhang Y, et al. Potential role for regulatory B cells as a major source of interleukin-10 in spleen from Plasmodium chabaudi-infected mice. Infect Immun 2018;86(5):e00016–e00018. DOI: 10.1128/IAI.00016-18
  68. Abrams ET, Brown H, Chensue SW, et al. Host response to malaria during pregnancy: placental monocyte recruitment is associated with elevated β chemokine expression. J Immunol 2003;170(5):2759–2764. DOI: 10.4049/jimmunol.170.5.2759
  69. Chaisavaneeyakorn S, Moore JM, Mirel L, et al. Levels of macrophage inflammatory protein 1α-(MIP-1α) and MIP-1β in intervillous blood plasma samples from women with placental malaria and human immunodeficiency virus infection. Clin Diagn Lab Immunol 2003;10(4):631–636. DOI: 10.1128/cdli.10.4.631-636.2003
  70. Suguitan AL, Leke RGF, Fouda G, et al. Changes in the levels of chemokines and cytokines in the placentas of women with Plasmodium falciparum malaria. J Infect Dis 2003;188(7):1074–1082. DOI: 10.1086/378500
  71. Raghupathy R. Th1-type immunity is incompatible with successful pregnancy. Immunol Today 1997;18(10):478–482. DOI: 10.1016/s0167-5699(97)01127-4
  72. Sánchez KE, Spencer LM. Pregnancy-associated malaria: effects of cytokine and chemokine expression. Travel Medicine and Infectious Disease 2022;47:102282. DOI: 10.1016/j.tmaid.2022.102282
  73. Moormann AM, Sullivan AD, Rochford RA, et al. Malaria and pregnancy: placental cytokine expression and its relationship to intrauterine growth retardation. J Infect Dis 1999;180:1987–1993. DOI: 10.1086/315135
  74. Suguitan AL Jr, Cadigan TJ, Nguyen TA, et al. Malaria-associated cytokine changes in the placenta of women with pre-term deliveries in Yaounde, Cameroon. Am J Trop Med Hyg 2003;69(6):574–581. DOI: 10.4269/ajtmh.2003.69.574
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.