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ABSTRACT

Gallium-68, a positron emitter, is available via 68Ge/68Ga
generators. The simple chemistry and easy availability has
increased its application from the clinical diagnosis to
personalized therapy and has lot more potential in future.
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INTRODUCTION

The availability of 68Ga as a positron emission tomography
(PET) radionuclide for imaging dates back to early 60’s at
a time when neither PET nor fluorine-18 (F-18) was
established. With the emergence of cyclotron and automated
chemistry modules, F-18 radiopharmaceuticals established
their empire in nuclear medicine. The resurgence of 68Ge/
68Ga generator was due to the consistent efforts by
radiochemists from Czechoslovakia and Russia in 20th
century.1,2 The modern 68Ge/68Ga generators have proved
to be a milestone for noninvasive state-of-art PET/CT
imaging. After that there was no looking back for Ga-68
imaging.

The advantages of 68Ga over other PET-based
radionuclides are its availability from an in-house generator
independent of an onsite cyclotron. The half-life of Ga-68
is 68 minutes. Eighty-nine percent of Ga-68 decays by
emitting positron of 1.92 MeV and the rest 11% by electron
capture. The parent 68Ge is produced in accelerator by
(p, 2n) reaction on Ga2O3 target. 68Ge decays with a half-
life of 270.8 days by electron capture which enable long
shelf life to generator (>6 months) and reduces the unit-
dose cost. Due to short half life, Ga-68 can be eluted 2 to 3
times a day (after 3-5 hours) as per the requirement/patients
number.

68Ge/68Ga GENERATOR SYSTEM

In 68Ge/68Ga generator system, 68Ge is strongly adsorbed
on different solid supports such as, metal oxides  (Al2O3,
TiO2 or SnO2), organic (pyrogallol-formaldehyde resins)
and inorganic supports (silica based).3-6 The Ga-68 from
currently available 68Ge/68Ga generators is eluted with dilute
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hydrochloric acid as a cationic 68Ga3+. Initially the long
processing was required to remove metallic impurities of
solid support and Ge-68 breakthrough from Ga-68 elute.
With the development of nonmetallic silica-based column,
the processing step for the elution of Ga-68 was eliminated.
Silica has high binding affinity for Ge which reduces the
Ge-68 breakthrough to negligible level.

APPLICATION OF 68Ga3+

Gallium acts as an iron analog and binds to transferrin and
lactoferrin. The complex diffuses through loose endothelial
junctions of capillaries at the sites of inflammation and
enters the extracellular fluid. Leukocytes also migrate to
sites of inflammation, degranulate and release large
quantities of lactoferrin. Ga attaches to siderophores of
bacteria and therefore can be used in leukopenic patients
with bacterial infection and also in detecting sterile
abscesses that provoke a leukocyte response.7 In earlier
times, Ga-67 citrate was very popular for infection imaging
by exploiting above properties of Ga.8 Due to low energy,
long imaging time (half life: 78 hours) and poor image
quality, the impact of Ga-67 imaging faded away. The
resurgence of Ga-68, a PET radionuclide has revived the
importance of 68Ga as natural in vivo infection/inflammation
imaging agent.9,10 Now, the infection imaging is done using
68Ga-citrate and 68GaCl3.

68Ga3+ CHEMISTRY

68Ga-complexes has simple aqueous coordinate chemistry
based on Me(III).11 Gallium, in aqueous solution, occurs
solely in +3 oxidation state and is classified as a hard acid
metal. Gallium can bond to highly ionic hard base ligand
donors, such as carboxylic acids, amino nitrogens,
hydroxamates, thiols and phenolates. The Ga chemistry is
highly influenced by pH change. The optimum pH (3-5) is
required for its aqueous chemistry. The pH below optimum
inhibits the reaction and at pH above optimum range, i.e.
>5, it tends to hydrolyze and leads to the precipitation as
Ga(OH)3.

Ga-68-LABELED MOLECULES

Several suitable bifunctional chelators have been developed,
and coupled with biomolecules for Ga-68 labeling. DOTA,
NOGADA and NOTA are commonly used bifunctional
chelators. Many peptides/biomolecules like receptor
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peptides and antibodies etc have now been successfully
modified by these chelating agents without compromising
their functional properties which further widened the role
of Ga-68 PET/CT imaging. These peptides/biomolecules
show very fast target localization and fast blood clearance
thus, making the short half-life ideal for clinical studies. In
the last decade 68Ga-DOTA-octreotides replaced
99mTc/111In-DTPA-octroescan used for neuroendocrine
tumor (NET) imaging.  68Ga-DOTA-octreotides proved to
be a promising radiopharmaceutical for diagnosis, treatment
planning, therapy response evaluation and disease
recurrence of NET.12 Several peptides like somatostatin for
imaging NET, integrin peptide for imaging neoangiogenesis,
etc. are now available as cold kits.

Ga-68 labeling has also been explored with other peptide
receptors, like cholecystokinin/gastrin and GLP-1 analogs
for NETs, bombesin and neuropeptide-Y analogs for
prostate or breast cancers.13-15 Arg-Gly-Asp (RGD) a cyclic
tripeptide is used to image neoangiogenic/angiogenic
vessels and mediated cell adhesion molecule by targeting
overexpressed v3 integrin. Inflammatory bowel disease,
inflamed synovial tissue of rheumatoid arthritis and
inflammatory atherosclerotic plaques can also be visualized
by 68Ga-RGD peptide.16 Vascular adhesion protein-I
(VAP 1) is an inflammation inducible endothelial cell
molecule. It also contributes to extravasation cascade and
controls trafficking of leukocyte at the site of inflammation.
VAP-1 is expressed on the endothelial surface of intestinal
blood vessels in inflammatory diseases, in skin inflammation
(psoriasis), synovial blood vessels of inflamed joints
(rheumatic arthritis) and cardiovascular diseases. However,
VAP-1 is absent from the endothelial surface of normal
tissues. Ga-68-labeled peptide against VAP-1 have been
used for in vivo imaging of VAP-1 knockout.17

FUTURE

In the modern era of ‘personalized medicine’, Ga-68 has a
promising role. The targets can be defined with the help of
diagnostic Ga-68 PET/CT using appropriate ligands
(peptides/biomolecules) for detection of disease,
pretherapeutic measurement of organ and tumor doses. The
therapeutic analog of imaging radionuclide (Lu-177/Y-90)
can be selected for therapy using the same peptide.
Nanomedicine in future has a great potential for early
detection, accurate diagnosis and personalized treatment of
various diseases, particularly cancer. Nanomedicine can
offer unprecedented interactions with biomolecules, on the
surface as well as inside the cells which may revolutionize
disease diagnosis and treatment. Molecular imaging can
measure the expression of molecular markers at different

stages of diseases and provide relevant and reliable
information in an intact system. The information may speed
up the drug development process and help in individualized
treatment monitoring and dose optimization. Ga-68 is an
ideal radionuclide for labeling various nanoparticles like
single-walled carbon nanotubes (SWNTs), quantum dots
(QD), polymeric and metallic nanoparticles, etc. for
evaluation of their biodistribution, pharmacokinetic
properties and tumor targeting efficacy.18-20 The information
may be utilized for early diagnosis, selecting better treatment
options and predicting the disease prognosis.

With each passing day, the reign of Ga-68 in research
and clinical application is increasingly being established. It
has a lot in store for future. The easy availability and simple
chemistry based on sophisticated chelating agents for Ga-
68 will make it parallel to kit-based Tc-99m chemistry as
predicted by Deutsch.21
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